An Information Entropy-Based Animal Migration Optimization Algorithm for Data Clustering
نویسندگان
چکیده
Data clustering is useful in a wide range of application areas. The Animal Migration Optimization (AMO) algorithm is one of the recently introduced swarm-based algorithms, which has demonstrated good performances for solving numeric optimization problems. In this paper, we presented a modified AMO algorithm with an entropy-based heuristic strategy for data clustering. The main contribution is that we calculate the information entropy of each attribute for a given data set and propose an adaptive strategy that can automatically balance convergence speed and global search efforts according to its entropy in both migration and updating steps. A series of well-known benchmark clustering problems are employed to evaluate the performance of our approach. We compare experimental results with k-means, Artificial Bee Colony (ABC), AMO, and the state-of-the-art algorithms for clustering and show that the proposed AMO algorithm generally performs better than the compared algorithms on the considered clustering problems.
منابع مشابه
Improved COA with Chaotic Initialization and Intelligent Migration for Data Clustering
A well-known clustering algorithm is K-means. This algorithm, besides advantages such as high speed and ease of employment, suffers from the problem of local optima. In order to overcome this problem, a lot of studies have been done in clustering. This paper presents a hybrid Extended Cuckoo Optimization Algorithm (ECOA) and K-means (K), which is called ECOA-K. The COA algorithm has advantages ...
متن کاملSolving Traveling Salesman Problem based on Biogeography-based Optimization and Edge Assembly Cross-over
Biogeography-Based Optimization (BBO) algorithm has recently been of great interest to researchers for simplicity of implementation, efficiency, and the low number of parameters. The BBO Algorithm in optimization problems is one of the new algorithms which have been developed based on the biogeography concept. This algorithm uses the idea of animal migration to find suitable habitats for solvin...
متن کاملModified Convex Data Clustering Algorithm Based on Alternating Direction Method of Multipliers
Knowing the fact that the main weakness of the most standard methods including k-means and hierarchical data clustering is their sensitivity to initialization and trapping to local minima, this paper proposes a modification of convex data clustering in which there is no need to be peculiar about how to select initial values. Due to properly converting the task of optimization to an equivalent...
متن کاملEntropy-based Consensus for Distributed Data Clustering
The increasingly larger scale of available data and the more restrictive concerns on their privacy are some of the challenging aspects of data mining today. In this paper, Entropy-based Consensus on Cluster Centers (EC3) is introduced for clustering in distributed systems with a consideration for confidentiality of data; i.e. it is the negotiations among local cluster centers that are used in t...
متن کاملAn Optimization K-Modes Clustering Algorithm with Elephant Herding Optimization Algorithm for Crime Clustering
The detection and prevention of crime, in the past few decades, required several years of research and analysis. However, today, thanks to smart systems based on data mining techniques, it is possible to detect and prevent crime in a considerably less time. Classification and clustering-based smart techniques can classify and cluster the crime-related samples. The most important factor in the c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Entropy
دوره 18 شماره
صفحات -
تاریخ انتشار 2016